|
| | TransformationModelLinear (const DataPoints &data, const Param ¶ms) |
| | Constructor. More...
|
| |
| | ~TransformationModelLinear () override=default |
| | Destructor. More...
|
| |
| double | evaluate (double value) const override |
| | Evaluates the model at the given value. More...
|
| |
| void | getParameters (double &slope, double &intercept, String &x_weight, String &y_weight, double &x_datum_min, double &x_datum_max, double &y_datum_min, double &y_datum_max) const |
| | Gets the "real" parameters. More...
|
| |
| void | invert () |
| | Computes the inverse. More...
|
| |
| const Param & | getParameters () const |
| | Gets the (actual) parameters. More...
|
| |
| | TransformationModel () |
| | Constructor. More...
|
| |
| | TransformationModel (const TransformationModel::DataPoints &, const Param &) |
| |
| virtual | ~TransformationModel () |
| | Destructor. More...
|
| |
| virtual void | weightData (DataPoints &data) |
| | Weight the data by the given weight function. More...
|
| |
| virtual void | unWeightData (DataPoints &data) |
| | Unweight the data by the given weight function. More...
|
| |
| bool | checkValidWeight (const String &weight, const std::vector< String > &valid_weights) const |
| | Check for a valid weighting function string. More...
|
| |
| double | checkDatumRange (const double &datum, const double &datum_min, const double &datum_max) |
| | Check that the datum is within the valid min and max bounds. More...
|
| |
| double | weightDatum (const double &datum, const String &weight) const |
| | Weight the data according to the weighting function. More...
|
| |
| double | unWeightDatum (const double &datum, const String &weight) const |
| | Apply the reverse of the weighting function to the data. More...
|
| |
| const Param & | getParameters () const |
| | Gets the (actual) parameters. More...
|
| |
| std::vector< String > | getValidXWeights () const |
| | Returns a list of valid x weight function strings. More...
|
| |
| std::vector< String > | getValidYWeights () const |
| | Returns a list of valid y weight function strings. More...
|
| |
Linear model for transformations.
The model can be inferred from data or specified using explicit parameters. If data is given, a least squares fit is used to find the model parameters (slope and intercept). Depending on parameter symmetric_regression, a normal regression (y on x) or symmetric regression ( \( y - x \) on \( y + x \)) is performed.
Without data, the model can be specified by giving the parameters slope, intercept, x_weight, y_weight explicitly.